Gradient Ricci solitons with a conformal vector field
نویسندگان
چکیده
منابع مشابه
Gradient Kähler Ricci Solitons
Some observations about the local and global generality of gradient Kähler Ricci solitons are made, including the existence of a canonically associated holomorphic volume form and vector field, the local generality of solutions with a prescribed holomorphic volume form and vector field, and the existence of Poincaré coordinates in the case that the Ricci curvature is positive and the vector fie...
متن کاملRigidity of Gradient Ricci Solitons
We define a gradient Ricci soliton to be rigid if it is a flat bundle N×ΓR k where N is Einstein. It is known that not all gradient solitons are rigid. Here we offer several natural conditions on the curvature that characterize rigid gradient solitons. Other related results on rigidity of Ricci solitons are also explained in the last section.
متن کاملOn Gradient Ricci Solitons with Symmetry
We study gradient Ricci solitons with maximal symmetry. First we show that there are no non-trivial homogeneous gradient Ricci solitons. Thus the most symmetry one can expect is an isometric cohomogeneity one group action. Many examples of cohomogeneity one gradient solitons have been constructed. However, we apply the main result in [12] to show that there are no noncompact cohomogeneity one s...
متن کاملOn the Completeness of Gradient Ricci Solitons
A gradient Ricci soliton is a triple (M, g, f) satisfying Rij +∇i∇jf = λgij for some real number λ. In this paper, we will show that the completeness of the metric g implies that of the vector field ∇f .
متن کاملStability of Gradient Kähler-ricci Solitons
We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2018
ISSN: 0047-2468,1420-8997
DOI: 10.1007/s00022-018-0439-x